The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  2  X  X  X  2  X  2  X
 0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2  0 2X+2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X  2 2X+2 2X+2 2X+2  2 2X+2 2X+2 2X+2  2  0  0  0 2X  0  0 2X 2X 2X 2X  2 2X+2  0
 0  0 2X  0  0  0 2X  0  0 2X  0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X  0  0  0  0  0  0  0  0  0  0  0  0 2X 2X 2X 2X  0  0 2X 2X  0 2X 2X  0 2X  0 2X  0  0
 0  0  0 2X  0  0  0 2X 2X 2X 2X 2X 2X  0 2X  0  0  0  0  0 2X 2X 2X 2X 2X 2X 2X 2X  0  0  0  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0 2X 2X  0  0 2X  0 2X  0 2X
 0  0  0  0 2X 2X 2X 2X 2X  0  0 2X  0 2X 2X  0  0  0 2X 2X 2X 2X  0  0  0  0 2X 2X 2X 2X  0  0  0 2X 2X  0  0 2X 2X  0 2X 2X  0  0  0  0 2X 2X  0 2X 2X  0 2X

generates a code of length 53 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 50.

Homogenous weight enumerator: w(x)=1x^0+58x^50+152x^52+128x^53+126x^54+22x^56+6x^58+14x^60+2x^62+1x^64+2x^68

The gray image is a code over GF(2) with n=424, k=9 and d=200.
This code was found by Heurico 1.16 in 0.125 seconds.